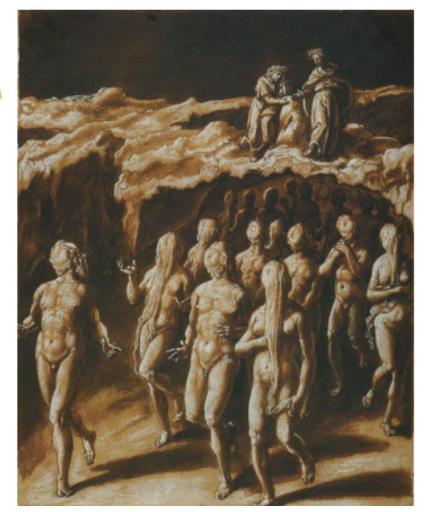
Artificial intelligence in medicine from genomic to personalize medicine

WORK SHOP GARR 2020 MET

Maurizio Polano IRCCS CRO AVIANO

Experimental and Clinical Pharmacology Division

- Develop precision medicine approach base on genomic and molecular profile of the tumour.
- Develop clinical trials (phase 1-phase 2)
- Develop nano drugs and therapies using CART cells.
- Develop computational approach on big data for personalised medicine



Inferno - Canto ventesimo

Da Wikipedia, l'enciclopedia libera.

Il canto ventesimo dell'Inferno di Dante Alighieri si svolge nella quarta bolgia dell'ottavo cerchio, ove sono puniti gli indovini e i maghi; siamo all'alba del 9 aprile 1300 (Sabato Santo), o secondo altri commentatori del 26 marzo 1300.

Dante, dopo una descrizione generale, indica tra i peccatori, attraverso le parole di Virgilio, cinque indovini antichi (quattro dei quali mitologici) e tre moderni. Durante la presentazione dell'indovina Manto c'è una lunga digressione sulle origini di Mantova.

Personalized medicine vs Precision Medicine

Accuracy

- Personalised medicine is an emerging practice of medicine that uses an individual's genetic profile to guide decision made in regard to the prevention, diagnosis and treatment of disease.
- Precision medicine are term more appropriate for the description of the approach the focus is on identifying which approaches will be effective for which patients based on genetic, environmental, and lifestyle factors
- Pharmacogenomics is the study of how genes affect a person's response to particular drugs.

PRECISION VS ACCURACY Precision Precision Precision Precision Precision Precision Precision

X Accuracy

Accuracy

Accuracy

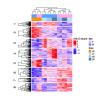
DATA Make knowledge from comics

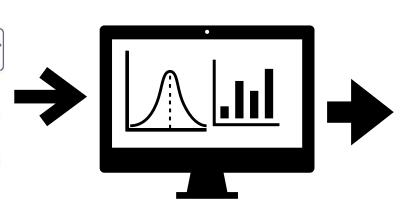
KNOWLEDGE Predict clinical phenotype

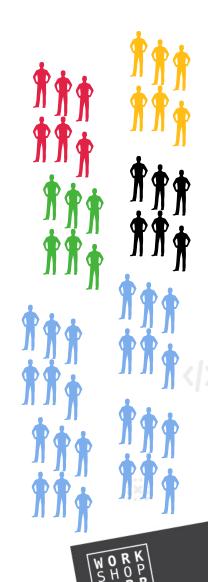
ACTION
Select optimal therapy

Pathology Images

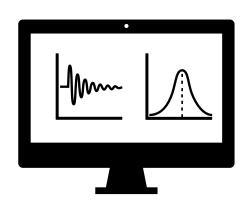
Genomic Data

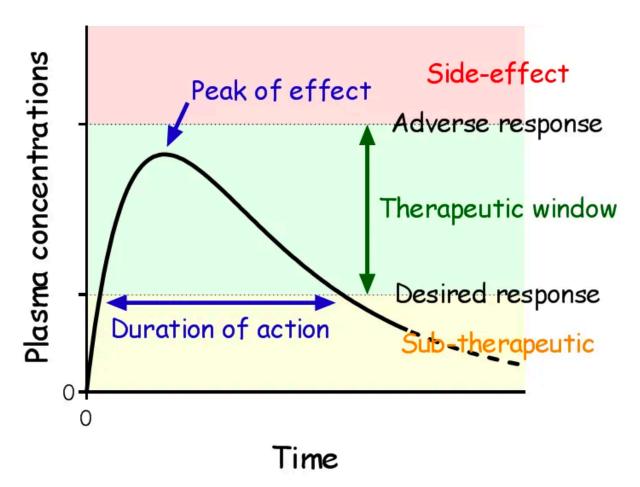






Therapeutic Window and Therapeutic Index



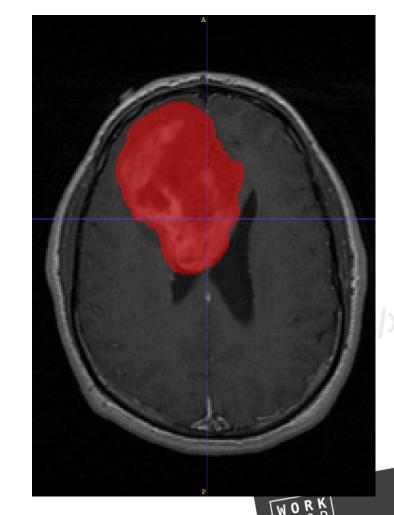


Glioblastoma (GBM) is a devastating disease for both patients and caregivers.

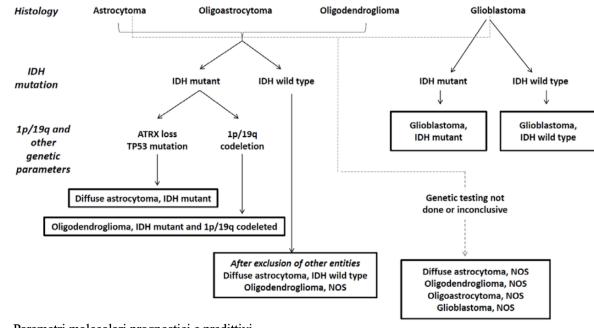
It is the most aggressive primary brain tumour – a tumour that originates in the brain – and despite available therapies, prognosis is extremely poor.

The majority of patients do not survive for more than two years following diagnosis, and the median survival is generally less than a year. 1

The average 5-year survival rate is less than 3%

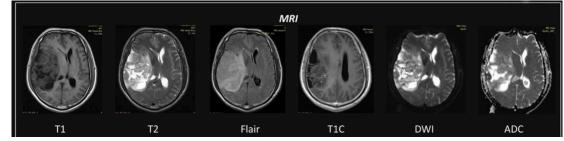


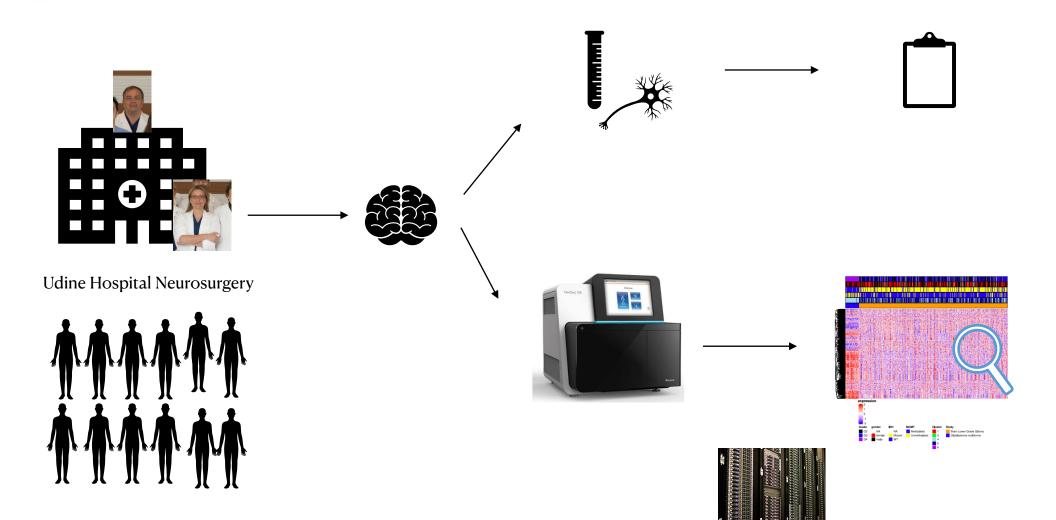
Standard treatment based on surgery, radiotherapy with concomitant temozolomide followed by 6 or more cycles of adjuvant temozolomide: medial overall survival (OS) is 14.6 months, progression free survival (PFS) 6.9 months (Stupp et al 2005)



Parametri molecolari prognostici e predittivi.

	Prognostico	Predittivo
Metilazione MGMT	X	X*
Co-delezione 1p/19q	X	X
Mutazione IDH1/IDH2	X	

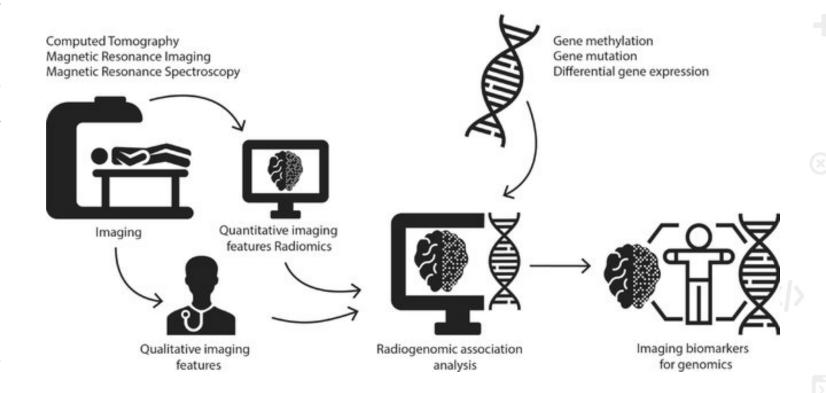




RADIOGENOMICS

Radiogenomics is a relatively recently coined term to denote the relationship between the imaging features of a particular disease and various genetic or molecular features. The former is referred to as an imaging phenotype, whereas the later as genomic phenotype.

Radiogenomics, therefore, provides a tool for clinicians to correlate imaging traits to molecular markers of diseases processes (such as cancer) in an effort to guide tailored therapy



Machine learning and glioma imaging biomarkers

 Table 1

 Recent studies applying machine learning to the development of neuro-oncology monitoring biomarkers.

Author(s)	Prediction	Dataset	Method	Results
Cha et al., 2014 ⁴⁰	True progression	35 CBV & ADC	Retrospective Multivariate logistic regression, longitudinal subtraction of ADC & CBV histograms	Mode of rCBV AUC: 0.877
Park et al., 2015 ⁴⁴	Early true progression	162 (training = 108 & testing = 54) DWI, DSC, DCE	Retrospective Volume-weighted, MP clustering	Sensitivity: 87% Specificity: 87.1% AUC: 0.96
Yun et al., 2015 ⁴²	True progression	33 DCE	Prospective Multivariate logistic regression, K_{trans} , v_e , v_p	K _{trans} Accuracy: 76% Sensitivity: 59% Specificity: 94%
Artzi et al., 2016 ⁴⁹	Pseudoprogression	20 longitudinal patients DCE & MRS (training = 25/44 DCE & MRS studies; testing = 19/44 studies)	Prospective Voxel-wise SVM with K_{trans} , v_e , K_{ep} , v_p	Sensitivity: 98% Specificity: 97%
Tiwari <i>et al.</i> , 2016 ⁴⁷	Radiation necrosis	58 (training = 43 & testing = 15) MRI	Retrospective 119 features, mRmR feature selection, SVM. Sequence independent	AUC: 0.79 AUC (primary): 0.77 AUC (metastatic): 0.72
Qian et al., 2016 ³⁶	True progression	35 longitudinal DTI	Retrospective Spatiotemporal dictionary learning & SVM classification	Accuracy: 86.7% AUC: 0.92
Ion-Margineanu <i>et al.</i> , 2016 ⁵⁰	True progression	29 T1, T1 C, DKI, DSC	Prospective Compared 7 classifiers over various global and local features	T1 C Max BAR (balanced accuracy rate) value: 0.96 for AdaBoost
Yoon et al., 2017 ⁴⁵	True progression	75 MRI, DWI, DSC, DCE	Retrospective, unsupervised MP clustering of ADC, rCBV, IAUC	Sensitivity: 96.4% Specificity: 81.8% AUC: 0.95
Booth et al., 2017 ¹²	True progression	50 feature estimation. 24 (training = 17 & testing = 7) T2	Prospective testing set. SVM using Minkowski functionals	Accuracy: 88% AUC: 0.9
Kebir et al., 2017 ³⁰	True progression	14 18F-FET-PET	Retrospective, unsupervised Consensus clustering, 19 conventional and textural features	Sensitivity: 90% Specificity: 75% NPV: 75%
Nam <i>et al.</i> , 2017 ⁴³	True progression	37 DCE	Retrospective Multivariate logistic regression using pharmacokinetic parameters	K _{ep} Accuracy: 70.3% AUC: 0.75 Sensitivity: 71.4% Specificity: 90%
Jang et al., 2018 ³¹	Pseudoprogression	78 (training = 59 & testing = 19) T1 C MRI, Age, Gender, MGMT status, IDH mutation, radiotherapy dose & fractions, follow up interval	Retrospective 9 T1 C axial slices centred on lesion, CNN	AUC: 0.83
Ismail et al., 2018 ³⁷	True progression	105 (training = 59 & testing = 46) MRI	Retrospective SVM using global & local features of lesion & peritumour habitat	Accuracy: 90.2% Sensitivity: 100% Specificity: 94.7%
Kim <i>et al.</i> , 2018 ³⁸	Early true progression	95 (training = 61 & testing = 34) T1 C, FLAIR, DWI, DSC	Retrospective Generalised linear model, LASSO feature selection on multiparametric first- & second- order statistics	AUC: 0.85 Sensitivity: 71.4% Specificity: 90%

¹⁸F-FET-PET, [¹⁸F]-fluoroethyl-ı-tyrosine positron emission tomography; NPV, negative predictive value; T1 C, post contrast T1-weighted; MGMT, O⁶-methylguanine-DNA methyltransferase; IDH, isocitrate dehydrogenase; CNN, convolutional neural network; AUC, area under the receiver operator characteristic curve; AUPRC, area under the precision-recall curve; DCE, dynamic contrast-enhanced imaging; MRS, ¹H-magnetic resonance spectroscopy; SVM, support vector machine; mRmR, minimum redundancy and maximum relevance; CBV, cerebral blood volume (rCBV, relative CBV); ADC, apparent diffusion coefficient; IAUC, initial area under the curve; MP, multiparametric; DWI, diffusion-weighted imaging; DSC, dynamic susceptibility weighted; LASSO, least absolute shrinkage and selection operator; DTI, diffusor tensor imaging; DKI, diffusor kurtosis imaging.

T.C. Booth et al. / Clinical Radiology 75 (2020) 20e32

 Table 2

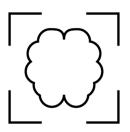
 Recent studies applying machine learning to the development of neuro-oncology prognostic biomarkers.

Author(s)	Dataset	Method	Results
Choi et al., 2015 ⁶⁰	61 preoperative DCE	Retrospective	C-index: 0.82
		Multivariate Cox regression using MRI,	
		pharmacokinetic, & clinical parameters	
Kickingereder	119 (training = 79 & testing = 40) T1, T1	Retrospective	C-index: 0.70
et al., 2016 ⁶¹	C, FLAIR, DWI, DSC	Supervised principal component analysis with Cox	
		regression analysis	
Chang et al., 2016 ⁶²	126 (training = 84 & testing = 42)	Retrospective	Accuracy: 76%
	patients T1, T2, FLAIR, T1 C, DWI	Random forest on radiomic features (including Laws,	
		Haralick)	
Liu et al., 2016 ⁶³	147 rs-fMRI and DTI	Retrospective	Accuracy: 75%
		SVM using clinical features & network features of	-
		structural & functional network	
Nie et al., 2016 ⁶⁴	69 T1 C, rs-fMRI, DTI	Prospective	Accuracy: 89.9%
		SVM using supervised CNN-derived features	Sensitivity: 96.9%
			Specificity: 83.8%
			PPR: 84.9%
			NPR: 93.9%
Macyszyn et al., 2016 ⁵¹	134 (training = 105 & testing = 29) T1,	Prospective	Accuracy (<6 months): 82.76%
,,	T1 C, T2, FLAIR, DTI, DSC	SVM for OS <6 months & SVM for OS <18 months	Accuracy (<18 months): 83.33
	,,,		Accuracy (combined): 79%
Zhou et al., 2017 ⁶⁵	32 TCGA T1 C, FLAIR, T2 &	Retrospective	Accuracy: 87.5%, 86.4%
,	22 T1 C, FLAIR, T2	Group difference features to quantify habitat	-,,
	22 11 0,12 110, 12	variation Supervised forward feature ranking with	
		SVM	
Dehkordi et al., 2017 ⁶⁶	33 pre-treatment DCE	Retrospective	Accuracy: 84.8%
Deimorar et al., 2017	35 pre treatment Deb	Adaptive neural network with fuzzy inference	recuracy. O 1.0%
		system using K _{trans} , K _{ep} and v _e	
Lao et al., 2017 ⁶⁷	112 (training = 75 & testing = 37) pre-	Retrospective	C-index: 0.71
Dao et all, 2017	treatment T1, T1 C, T2, FLAIR	Multivariate Cox regression analysis using radiomic	e maex. o., i
		features as well as "deep features" from pre-trained	
		CNN	
Liu et al., 2017 ⁶⁸	133 T1 C	Retrospective	Accuracy: 78.2%
Liu et ui., 2017	.55 c	Recursive feature selection with SVM	AUC: 0.81
		needisive reactive selection with 5 viv	Sensitivity: 79.1%
			Specificity: 77.3%
Li <i>et al.</i> , 2017 ⁶⁹	92 (training = 60, testing = 32) T1, T1 C,	Retrospective	C-index: 0.71
	T2, FLAIR.	Random forest for segmentation into 5 classes	
	TCGA data used.	Multivariate LASSO-Cox regression model	
Chato & Latifi, 2017 ⁵²	163 T1, T1 C, T2, FLAIR. Short-, mid-,	Retrospective	Accuracy: 91%
	long-term survivors	SVM, KNN, linear discriminant, tree, ensemble &	Linear discriminant using
		logistic regression applied to volumetric, statistical &	
		intensity texture, histograms & deep features	
Ingrisch et al., 2017 ⁷⁰	66 T1 C	Retrospective	C-index: 0.67
		Random survival forests using 208 global & local	
		features from segmented tumour	
Li et al.,	92 (training = 60 & testing = 32) T1, T1	Retrospective	C-index: 0.71
2017 ⁷¹	C. T2. FLAIR.	LASSO Cox regression to define radiomics signature	
·	TCGA data used.	-g	
Bharath <i>et al.</i> , 2017 ⁷²	63 TCGA preoperative: T1 C, FLAIR	Retrospective	C-index: 0.86
		LASSO Cox regression using age, KPS, DDIT3 & 11	
		principal component shape coefficients	
Shboul et al., 2017 ⁷³	163 T1, T1 C, T2, FLAIR	Retrospective	Accuracy: 63%
		Recursive feature selection & random forest	-
		regression	
Peeken et al., 2018 ⁷⁴	189 T1, T1 C, T2, FLAIR & clinical data.	Retrospective	C-index: 0.69
		Multivariate Cox regression using VASARI features	
		and clinical data	
Kickingereder	181 (training = 120 & testing = 61)	Retrospective	C-index: 0.77
et al., 2018 ⁷⁵	pretreatment MRI	Penalised Cox model for radiomic signature	
,	F	construction	
Chaddad et al., 2018 ⁷⁶	40 (training = 20 & testing = 20)	Retrospective	AUC: 74.4%
	preoperative MRI, T1 & FLAIR.	Random forest on multi-scale texture features	
Bae et al., 2018 ⁷⁷	217 (training = 163 & testing = 54) pre-	Retrospective	iAUC: 0.65
Due 21 Mi., 2010	operative MRI, T1 C, T2, FLAIR, DWI	Variable hunting algorithm for selection & random	

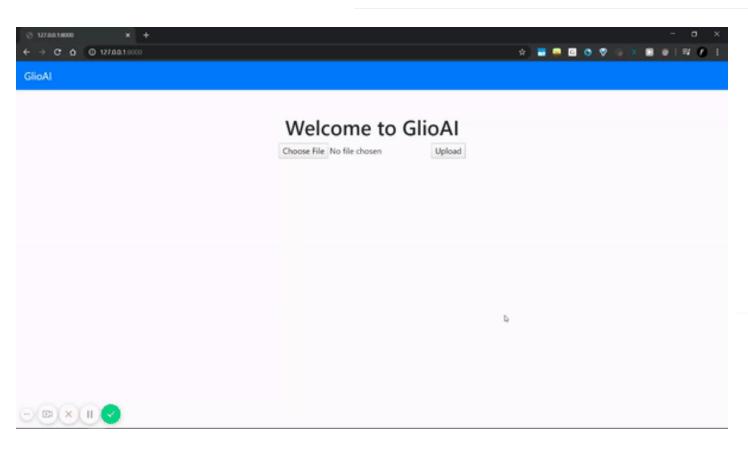
TCGA, The Cancer Genome Atlas; T1 C, post contrast T1-weighted; SVM, support vector machine; DCE, dynamic contrast-enhanced imaging; CNN, convolutional neural networis; KNN, k-nearest neighbours/rs-fMRI, resting state functional MRI; KPS, Karnofsky performance status; DDIT3, DNA damage inducible transcript 3; DTI, diffusor tensor imaging; DSC, dynamic susceptibility weighted; OS, overall survival.

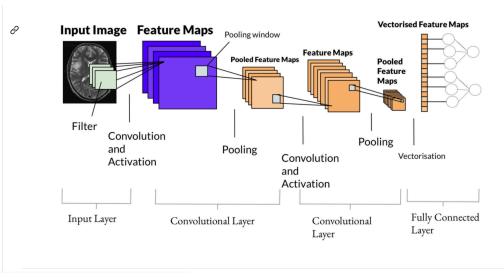
Maurizio Polano - CRO-AVIANO

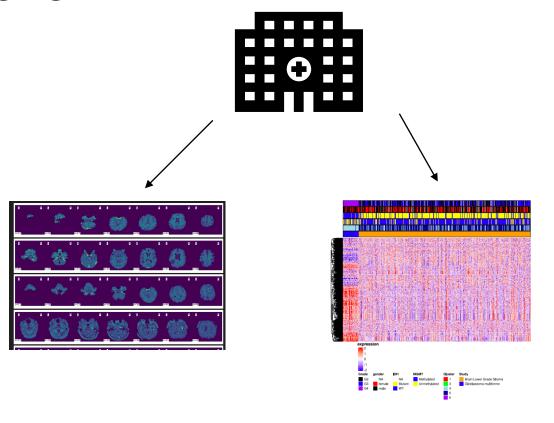
11

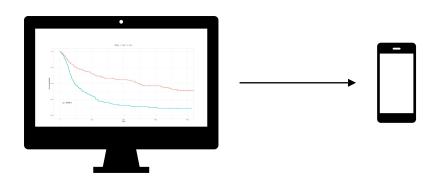


GlioAl: Automatic Brain Tumor Detection System





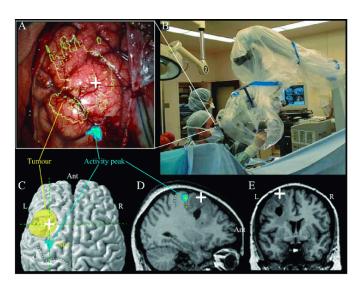




S.O.C. GESTIONE DELLE TECNOLOGIE CLINICHE Head: Ricci Roberto

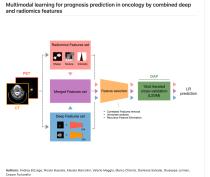
Nvidia Tesla V100 GPUs.

Pre-Operative MRI for Neuronavigation



RADIOMICS

DEEP LEARNING



Docs » Welcome to pyradiomics documentation!

HK3 ob

HK3LAB

C Edit on GitHub

Welcome to pyradiomics documentation!

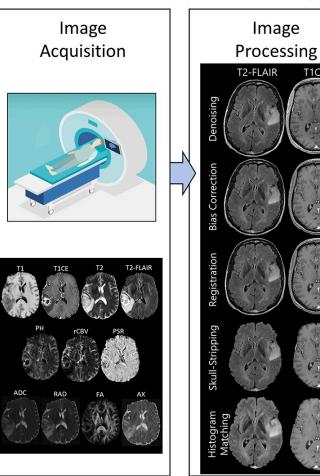
This is an open-source python package for the extraction of Radiomics features from medical imaging. With this package we aim to establish a reference standard for Radiomic Analysis, and provide a tested and maintained open-source platform for easy and reproducible Radiomic Feature extraction. By doing so, we hope to increase awareness of radiomic capabilities and expand the community. The platform supports both the feature extraction in 2D and 3D and can be used to calculate single values per feature for a region of interest ("segment-based") or to generate feature maps ("voxel-based").

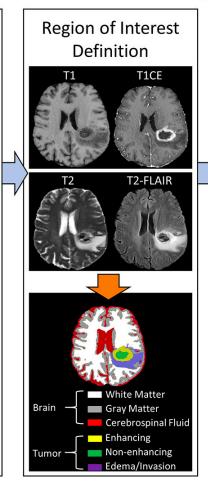
Deep learning is a subset of machine learning consisting of computational units of multiple layers resembling the multilayered human cognition system.

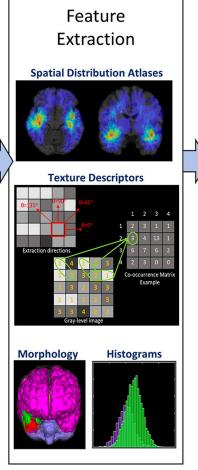
Several studies using deep learning to predict glioma grading, glioma genetic mutation or survival.

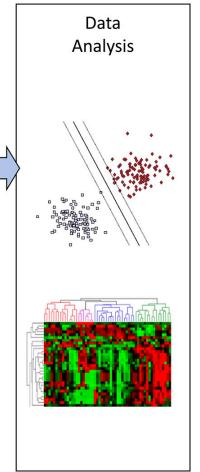
Emanuele Fabbiani Università di Pavia

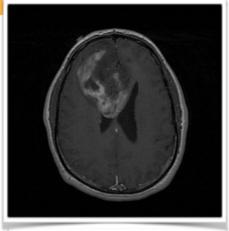
Typical Workflow of Radiogenomic Studies

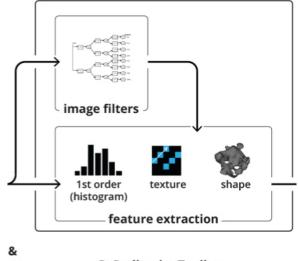








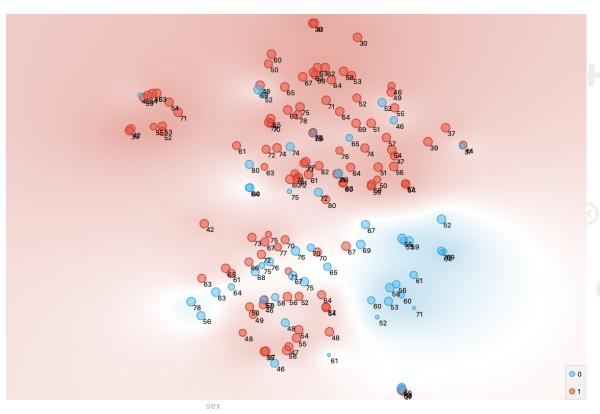




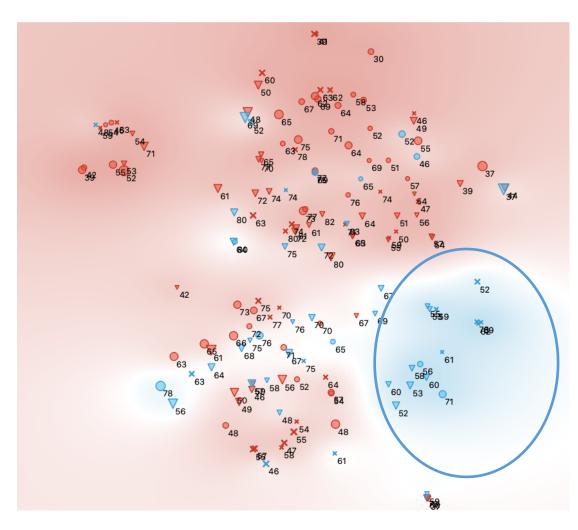
PyRadiomics Toolbox

type

<u> </u>	Count	Philips	Siemens	Total
eulo_ _	0	24.0	27.0	51.0
pts_6mesi_binary	1	50.0	57.0	107.0
pts_c _	Total	74.0	84.0	158.0

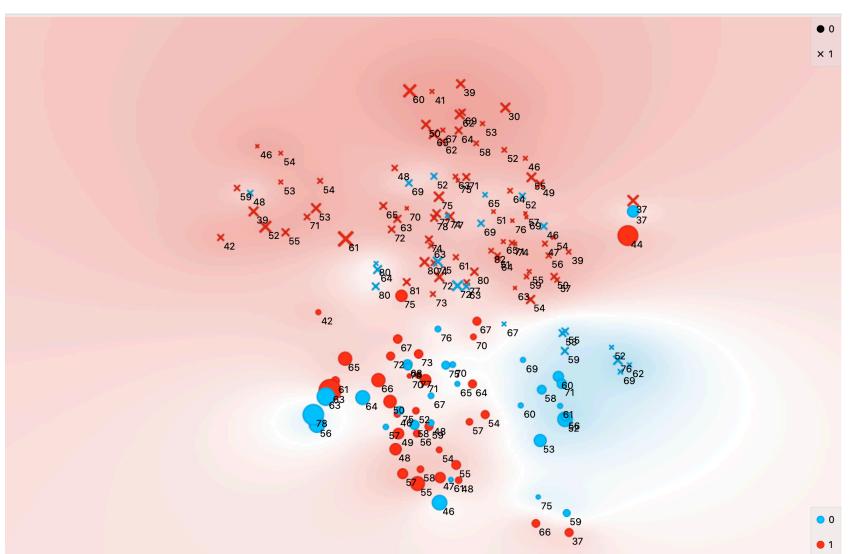


	,	Aggregate	0	1	Total
	0	Mean	89.559	89.059	89.392
lary		Median	92.5	95.0	95.0
si_bin	1	Mean	96.958	97.222	97.047
pfs_6mesi_binary		Median	100.0	100.0	100.0
pfs_	Total	Mean	94.562	94.604	94.576
		Median	98.0	98.0	98.0

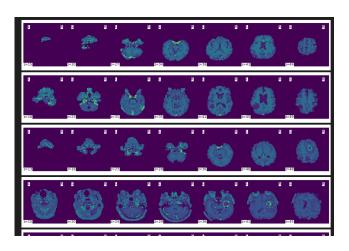


Volume T2 pre

IDH mutation an survival

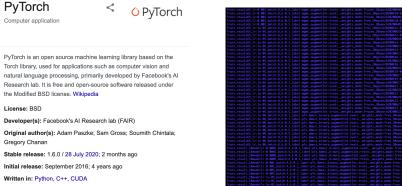


Mgmt



185 patients anonymous

Kubernets



Research lab. It is free and open-source software released under

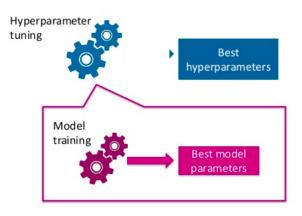
the Modified BSD license. Wikipedia

Gregory Chanan

Resnet-18

Resnet-34

Hyperparameter tuning vs. model training



Kubernets

O PyTorch

PyTorch is an open source machine learning library based on the Torch library, used for applications such as computer vision and natural language processing, primarily developed by Facebook's Al Research lab. It is free and open-source software released under the Modified BSD license. Wikipedia

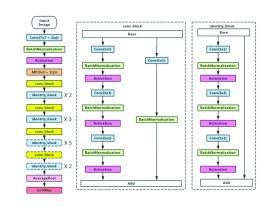
License: BSD

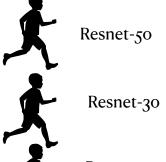
Developer(s): Facebook's Al Research lab (FAIR)

Original author(s): Adam Paszke; Sam Gross; Soumith Chintala; Gregory Chanan

Stable release: 1.6.0 / 28 July 2020; 2 months ago Initial release: September 2016; 4 years ago

Written in: Python, C++, CUDA

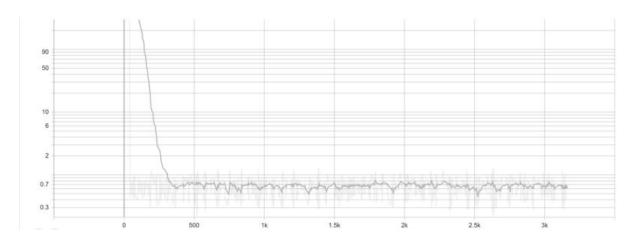




Resnet-105

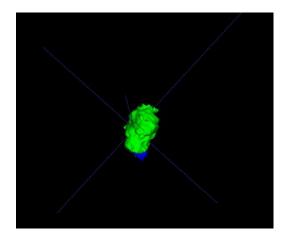
Parameters: 17861314 Total Parameters: 5102134

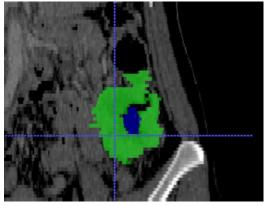
Resnet 18: Transfer learning using Medical Net 50 epoch

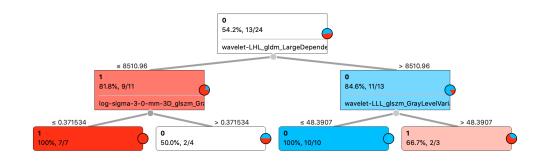


Train recule65 Ir-1a-05 hatch-9 Ir-0.1 Is

OTHER EXPERIENCE: COLON CANCER







Cancer Manageme	nt and Research	Dovepress open access to scientific and medical research
Open Access Full Text Article		ORIGINAL RESEARCH
prediction of		or the preoperative pancreatic fistula in odenectomy
	This article was published in the following Do Cancer Management and Research	ove Press journal:
Wenyu Zhang ^{1,2}	•	ndy was to develop and validate a radiomics-based formula

Rad-score= -6.34907-0.002009672*log-sigma-I-0-mm-3D_firstorder_Kurtosis	
+0.0002217893*log-sigma-3-0-mm-3D_firstorder_Maximum	
+0.08755741*log-sigma-4-0-mm-3D_firstorder_Skewness	
-4.839234*HHH_gldm_SmallDependenceLowGrayLevelEmphasis	
+3.12135*LHL_glcm_lmc2	
+1.333126*LHL_glrlm_RunEntropy	
-9.788694*LHL_glszm_SmallAreaLowGrayLevelEmphasis	
+7.885982*LHH_glcm_lmc2	
-3.23331*HHL_gldm_SmallDependenceLowGrayLevelEmphasis	
-0.01287862*HLH_firstorder_Kurtosis	
-0.2409615*HLH_glszm_ZoneEntropy	

Notes: L. and H indicus a low-quas (in, scaling) and a high-pass (in, weeleds function, respectively). The decompositions are communicated in this manner, applying their respective ordering follow on high-pass filters (in, y, x and effection, for example, LDH is the intersperted at the high-pass sub-band, resulting from directional filtering of X with a low-pass filter along y-direction, a high-pass filter along y-direction and a high-pass filter along z-direction.

Abbreviation Risk-scen, rediscring scene.

FUTURE

Thanks all for the Attention

